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GOALS
- Predict the shape of 3D CT from X-ray without CT supervision by incorporating realistic X-ray 

distributions during training of a reconstruction model


- Improve Tuberculosis (TB) classification accuracy using synthetically generated CT images

OVERVIEW
- In many rural and under-served populations, access to radiology is limited. X-rays, which are more 

accessible, do not provide the nuanced insight multiple slices of imaging a CT scanner provides


- Due to lack of paired X-ray+CT datasets, existing model (X2CT [1]) trains on synthetically generated X-
rays and relies on CycleGAN [2] to merge the synth2real domain gap, but leads to under penetrated (i.e., 
'whitened') X-Rays


- Building on the CT generative model X2CT [1], we introduce a shape induction loss that compares 
projections (sum along an axis) from the predicted CT and the input X-ray. In this case, real X-ray images 
are used for training directly (no CycleGAN [2]), and no pairs (X-ray, CT) are necessary

OPTIMIZATION OBJECTIVE

RESULTS
Trained with shape induction, the proposed method obtains both the 
highest classification accuracy and the best recall of TB examples. On the 
other hand, we find that the cycleGAN [2] CT offers less prediction value, 
with lower classification scores and lower TB recall rates.
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Conclusions and Future Work
- Offer a step towards developing a tool which can classify types of 

pulmonary disease, including TB and its specific subtypes, as well as 
provide clinicians with CT imaging after obtaining only chest X-rays

- Need to evaluate for “shortcut learning”
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The proposed method better captures anatomical details, such
as the shape of the lung and the pleural and thoracic integrity, avoiding gaps 
in the thoracic wall and pleural membrane surrounding the lungs seen on the 
projected X-rays and their corresponding generated CTs (not shown.


