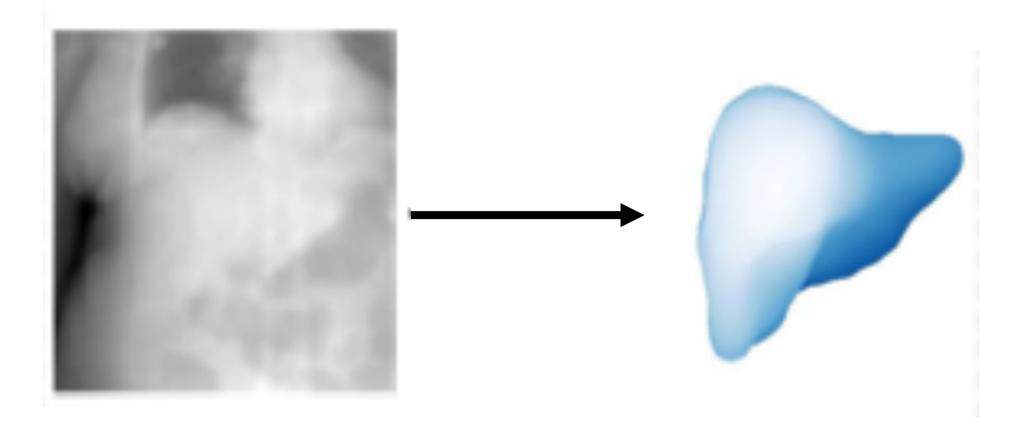
3D Organ Shape Reconstruction from Topogram Images

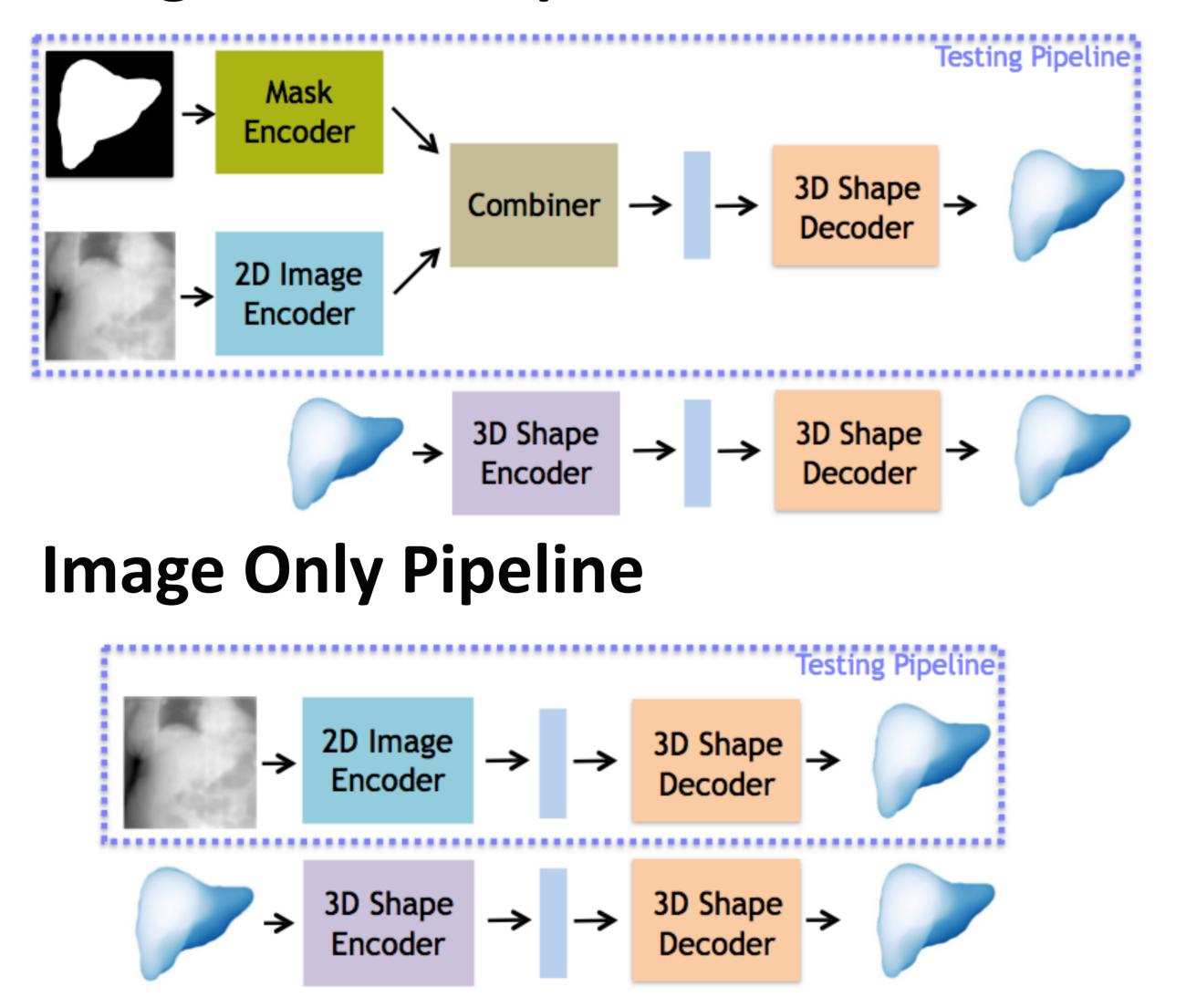
Elena Balashova¹, Jiangping Wang², Vivek Singh², Bogdan Georgescu², Brian Teixeira², and Ankur Kapoor² ¹Department of Computer Science, Princeton University ² Siemens Healthineers, Digital Services, Digital Technology and Innovation

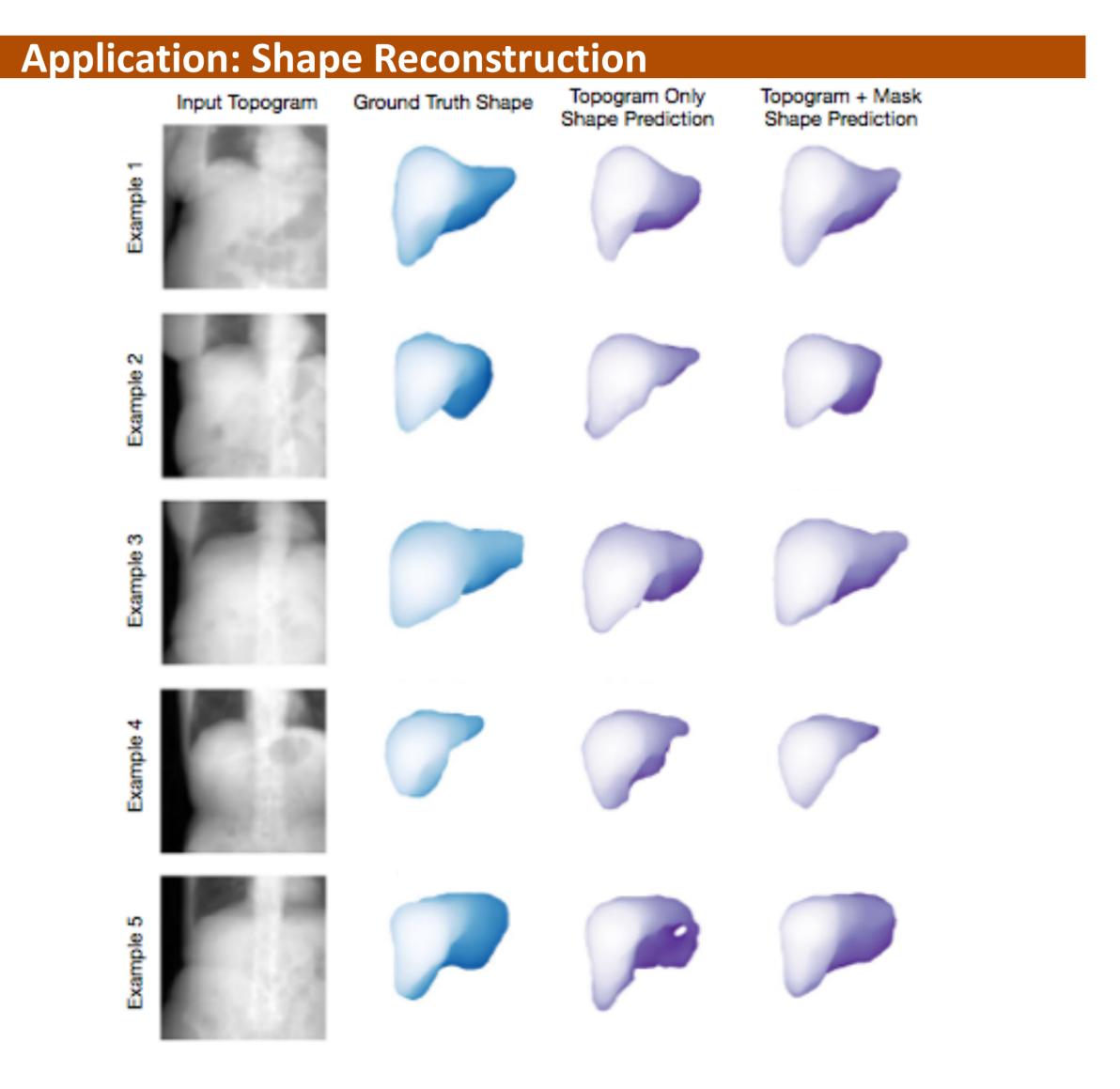
Automatic delineation and measurement of main organs such as liver is one of the critical steps for assessment of hepatic diseases, planning and postoperative or treatment follow-up. However, addressing this problem typically requires performing computed tomography (CT) scanning and complicated postprocessing of the resulting scans using slice-by-slice techniques. In this paper, we show that 3D organ shape can be automatically predicted directly from topogram Images which are easier to acquire and have limited exposure to radiation during acquisition, compared to CT scans. We evaluate our approach on the challenging task of predicting liver shape using a generative model. We also demonstrate that our method can be combined with user annotations, such as a 2D mask, for improved prediction accuracy. We show compelling results on 3D liver shape reconstruction and volume estimation on 2129 CT scans. In particular, we are able to estimate liver volume to 6% accuracy and predict liver shape to 0.90 Dice coefficient.



Training Pipeline

Image + Mask Pipeline

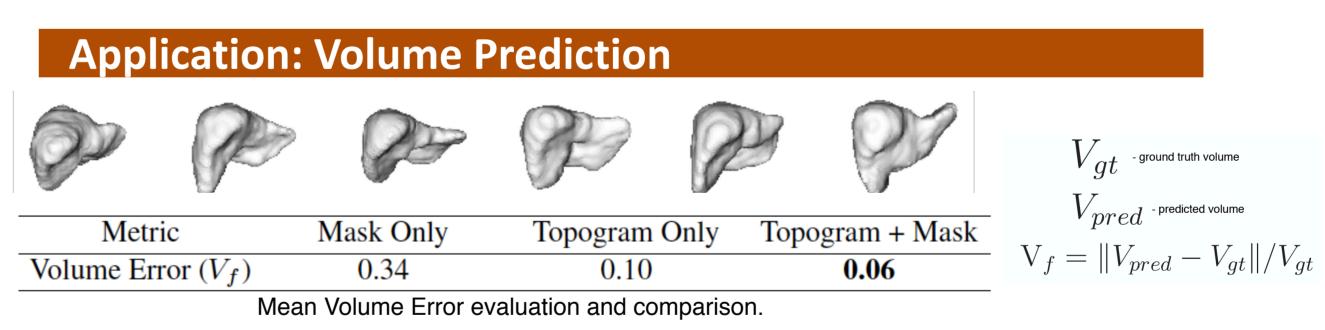




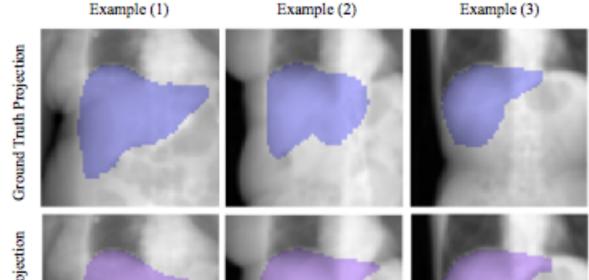
Loss Optimization

Kullback $Leibler divergence \qquad Leibler divergence \qquad Leibler$

$$\begin{array}{ll} \operatorname{Mask \ Loss} & & N \\ L_{mask}(k, \tilde{k}) = -\sum_{n=1}^{N} k_n \log \tilde{k}_n + (1 - k_n) \log \left(1 - \tilde{k}_n\right). \\ & & \operatorname{GT \ Mask \ Pred. \ Mask} \end{array}$$



Evaluation



	Volume Prediction	Shape Reconstruction		
	Volume Error (V_f)	IoU	Dice	Hausdorff
Variational Autoencoder (VAE) (without/with mask)	0.10/ 0.06	0.78/ 0.82	0.87/ 0.90	7.10/ 5.00
Adversarial (3D-GAN) [29]	0.21	0.61	0.75	10.50
Performance Difference	109% / 250%	22% / 26%	14% / 17%	48% / 110%

Comparison of the variational auto-encoder (VAE) (with

GT Shape Pred. Shape
$$L_{rec}(s, s') = -\frac{1}{N} \sum_{n=1}^{N} s_n \log s'_n + (1 - s_n) \log (1 - s'_n)$$

Reconstruction Loss

 $lpha_1, lpha_2, lpha_3, lpha_4\,$ - Sub-Component weights

Bibliography

[1] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable and generative vector representation for objects. In European Conference on Computer Vision pages 484–499. Springer, 2016. [2] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Torralba, and W. T. Freeman. Single image 3D interpreter network. In European Conference on Computer Vision, pages 365–382. Springer, 2016.

and without mask), and generative adversarial network (GAN) -based approaches on volume prediction and shape reconstruction tasks.

Disclaimer

This feature is based on research, and is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

> www.usa.siemens.com/healthcare © 2017 Siemens Medical Solutions USA, Inc. | All rights reserved

usa.siemens.com/abouthealthineers

