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Motivation
Wall paintings recovered from Akrotiri (Santorini), Greece

Antelope Fresco

Part of a reconstructed fresco

https://artoffresco.com 
https://www.santorini.com/archaeology/akrotiri.htm



Related Problems

[Henry ‘10]

RGB-D Reconstruction

[Huang ‘06]

Reconstruction of Fragmented ObjectsReconstruction of Torn Documents

[Biswas ‘05]
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Real Fragments

Reconstruction Pipeline
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Step 1: Scanning

Use a  laser scanner to acquire a 3D surface 

[Brown et al. 08]

Digital Scan of a Fragment
Physical Fragments

Surface Scanning



Step 2: Matching

Use an algorithm to find and rank potential pairwise 
matches between fragments

[Funkhouser et al. 2011] 

Resulting match is a geometric  
transformation between coordinate  
systems of two fragments

-   Angular offset

-  Translational offset

             Score: 1.15975



Step 3: Global Assembly

Find a globally optimal 
arrangement  in any 
cluster of fragments 

50K ranked matches, most are wrong



Challenge

Which matches are  part of 
the correct assembly?
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Existing Assembly Strategies

Dense Cluster Growth 

− clusters of fragments are merged by 
means of best candidate match

[Goldberg et al. 2002]



Existing Assembly Strategies

Hierarchical clustering  

− Start with all fragments as singleton 
clusters and merge in priority order 

− Fragment alignments are optimized in 
each iteration 

− Process terminates when no good merges 
are possible



Challenge: 
Catch - 22

Large Assembly Small Assembly

Need small assemblies to construct larger ones

Need larger assemblies to make decisions 
 about correctness



Approach

Genetic Algorithm 

• Population of clusters 

• Recombination 

• Selection 

Initialization

Selection Recombination

Termination



Initialization

Fragments 

Matches

Surface Scanning

Single Fragment Clusters

Matching

Score: 1.15975

Match Clusters



Population

Clusters of fragments joined by matches



Recombination

Create a new cluster from two parent clusters

By Fragment



Recombination

Create a new cluster from two parent clusters

By Match



Cluster Optimization

Find rotation angles for each fragment with 
respect to the global coordinate system 

− Find unknown angles 

− from known pairwise matches 

Resulting set of equations: 

Solving the above is a non-linear problem



Cluster Optimization

Optimize:

Iterative 
Normalized  
Eigenvector 

Method  
(it. NEVM)
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[Singer ‘11]
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Cluster Optimization

Iterative 
Normalized 
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Optimize:

Normalized 
Eigenvector 

Method 
(NEVM)

[Singer ‘11]

Least  
Squares 

(LS) 

Iterative  
Least  

Squares (LS) 

Limit Contribution of  
Wrong Matches

Find rotation angles for each fragment with 
respect to the global coordinate system 

− Find unknown angles 

− from known pairwise matches 



Selection

• Cluster Fitness 

• Selection Algorithm 

• Round Robin 

• Diversification



Cluster Fitness

Assign clusters scores based on their intrinsic properties



Round-Robin Selection

N
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Limit number of clusters with the same fragment



Diversification

Remove duplicate clusters
Jaccard Similarity =  

∩

∪

of fragments



Genetic Algorithm

and Scoring



Evaluation 

• Reconstruction quality? 

• Algorithmic contributions?



Evaluation: 
Reconstruction Quality (Quantitative)

F-score = 2 *

Performance comparison of different wall painting  
reconstruction methods with our fitness and feasibility criteria.

Method # of Fragments F-score
Our Full System (GA) 90 0.823

Hierarchical Clustering (HC) 42 0.411
Dense Cluster Growth (DCG) 7 0.082

Precision *  Recall
Precision + Recall
of correct matches
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Evaluation: 
Does Our Cluster Optimization Help?

Comparison of performance of our method  
with various cluster optimization routines. 



Evaluation: 
Do Larger Clusters Have Higher 

Precision?

Precision - Recall comparison of different iteration  
of our algorithm (aggregated over 10 runs) 



Summary

• Genetic algorithms are not greedy - they defer 
selection of matches until large assemblies are formed 

•  Our genetic algorithm is able to find larger assemblies 
than previous methods 

• More robust cluster optimization helps find larger 
assemblies



Limitations

• GA is very time consuming (tens of hours) 

• Hand - tuned cluster scoring function 
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