Wall Painting Reconstruction Using a Genetic Algorithm

Elena Sizikova, Thomas Funkhouser Princeton University

Motivation

Wall paintings recovered from Akrotiri (Santorini), Greece

Part of a reconstructed fresco

Antelope Fresco

Related Problems

Reconstruction of Torn Documents

Reconstruction of Fragmented Objects

[Huang '06]

RGB-D Reconstruction

[Henry '10]

Real Fragments

Reconstruction Pipeline

Real Fragments

3D Models

Reconstruction Pipeline

Step 1: Scanning

Use a laser scanner to acquire a 3D surface

Surface Scanning

Physical Fragments

Digital Scan of a Fragment

Step 2: Matching

Use an algorithm to find and rank potential pairwise matches between fragments

Step 3: Global Assembly

Find a globally optimal arrangement in any cluster of fragments

50K ranked matches, most are wrong

Challenge

?

Which matches are part of the correct assembly?

50K ranked matches, most are wrong

Challenge

50K ranked matches, most are wrong

Existing Assembly Strategies

Dense Cluster Growth

 clusters of fragments are merged by means of best candidate match

[Goldberg et al. 2002]

Existing Assembly Strategies

Hierarchical clustering

- Start with all fragments as singleton clusters and merge in priority order
- Fragment alignments are optimized in each iteration
- Process terminates when no good merges are possible

Need small assemblies to construct larger ones

Approach

Initialization

Population

Clusters of fragments joined by matches

Recombination

Create a new cluster from two parent clusters

By Fragment

Recombination

Create a new cluster from two parent clusters

Cluster Optimization

Find rotation angles for each fragment with respect to the global coordinate system

- Find unknown angles

$$\theta_1, \theta_2, \ldots, \theta_n \in [0, 2\pi]$$

- from known pairwise matches

$$\delta_{ij} = \theta_i - \theta_j$$

Resulting set of equations: $\theta_i - \theta_j = \delta_{ij} \mod 2\pi$

Solving the above is a non-linear problem

Cluster Optimization

Find rotation angles for each fragment with respect to the global coordinate system

- Find unknown angles

$$\theta_1, \theta_2, \ldots, \theta_n \in [0, 2\pi]$$

- from known pairwise matches

Cluster Optimization

Find rotation angles for each fragment with respect to the global coordinate system

- Find unknown angles

$$\theta_1, \theta_2, \ldots, \theta_n \in [0, 2\pi]$$

- from known pairwise matches

$$\delta_{ij} = \theta_i - \theta_j$$

Selection

- Cluster Fitness
- Selection Algorithm
 - Round Robin
 - Diversification

Cluster Fitness

Assign clusters scores based on their intrinsic properties

Convex Hull Ratio

Round-Robin Selection

Limit number of clusters with the same fragment

Diversification

Genetic Algorithm

Evaluation

- Reconstruction quality?
- Algorithmic contributions?

Method	# of Fragments	F-score
Our Full System (GA)	90	0.823
Hierarchical Clustering (HC)	42	0.411
Dense Cluster Growth (DCG)	7	0.082

Performance comparison of different wall painting reconstruction methods with our fitness and feasibility criteria.

F-score = 2 * Precision * Recall Precision + Recall

of correct matches

[Dense Cluster Growth]

[Castaneda et al. 2011]

[Dense Cluster Growth]

[Dense Cluster Growth]

[Our Result]

[Ground Truth]

[Dense Cluster Growth]

[Castaneda et al. 2011]

Evaluation: Does Our Cluster Optimization Help?

Comparison of performance of our method with various cluster optimization routines.

Evaluation: Do Larger Clusters Have Higher Precision?

Precision - Recall comparison of different iteration of our algorithm (aggregated over 10 runs)

Summary

- Genetic algorithms are not greedy they defer selection of matches until large assemblies are formed
- Our genetic algorithm is able to find larger assemblies than previous methods
- More robust cluster optimization helps find larger assemblies

Limitations

- GA is very time consuming (tens of hours)
- Hand tuned cluster scoring function

Acknowledgements

- University Collaborators: Benedict Brown, Tim Weyrich, Antonio García Castañeda, Szymon Rusinkiewicz, Amit Singer, Onur Ozyecil, Dimitris Gondicas, Corey Toler-Franklin, Princeton Graphics Group
- Akrotiri: Christos Doumas, Andreas Vlachopoulos
- Funding: Peter Nomikos Jr., The Kress Foundation, Seeger Foundation, Thera Foundation, Cotsen Family Foundation, Google, National Science Foundation, Intel, Adobe