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Motivation

Wall paintings recovered from Akrotiri (Santorini), Greece

Part of a reconstructed fresco

Antelope Fresco

https://artoffresco.com
https://www.santorini.com/archaeology/akrotiri.htm



Related Problems

Reconstruction of Torn Documents Reconstruction of Fragmented Objects

[Huang ‘06]

RGB-D Reconstruction

[Henry “10]



Computer Based
Reconstruction Methods

Real Fragments

Reconstruction Pipeline
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Computer Based
Reconstruction Methods
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Step 1: Scanning

Use a laser scanner to acquire a 3D surface
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Surface Scanning N

Digital Scan of a Fragment

Physical Fragments

[Brown et al. 08]



Step 2: Matching

Use an algorithm to find and rank potential pairwise
matches between fragments

Resulting match is a geometric
transformation between coordinate
systems of two fragments

cos 0; j —sino; j t
M= |sino;; coso;; t2

0 0 1
5,-j = 0; — QJ- - Angular offset

T = (t1,t2) - Translational offset

Score: 1.15975

[Funkhouser et al. 2011]



Step 3: Global Assembly

Find a globally optimal

arrangement in any .
cluster of fragments @

50K ranked matches, most are wrong



Challenge

Which matches are part of
the correct assembly?

50K ranked matches, most are wrong



Challenge

Which matches are part of
the correct assembly? N
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Existing Assembly Strategies

Dense Cluster Growth

- clusters of fragments are merged by
means of best candidate match
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|Goldberg et al. 2002]




Existing Assembly Strategies

Hierarchical clustering

- Start with all fragments as singleton
clusters and merge in priority order O
- Fragment alignments are optimized in

each iteration O
- Process terminates when no good merges Q
are possible .




Challenge:
Catch - 22

Need larger assemblies to make decisions
about correctness

VR

Large Assembly Small Assembly

N

Need small assemblies to construct larger ones



Approach

Genetic Algorithm
* Population of clusters
« Recombination

e Selection

INnitialization
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INnitialization

Fl’ag me ﬂtS Single Fragment Clusters

Surface Scanning

Match Clusters
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Population

Clusters of fragments joined by matches




Recombination

Create a new cluster from two parent clusters




Recombination

Create a new cluster from two parent clusters
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Cluster Optimization

Find rotation angles for each fragment with
respect to the global coordinate system ~— ™\

- Find unknown angles

(/7)1, 92, o oo 79" S [O, 27'[']

- from known pairwise matches
5 =0; — 0,

Resulting set of equations:
0 —0; =0;; mod 27

Solving the above is a non-linear problem




Cluster Optimization

Find rotation angles for each fragment with
respect to the global coordinate system

- Find unknown angles

91, 92, c e ,97;} — [0, 271']

- from known pairwise matches

5ii=0; — 0,

Optimize: i
vy ~. o )iduz,- -
g Jpin, 2 (5= €%)
i.f
v v v v
Normalized lterative
Least lterative Eigenvector Normalized
Squares L east Method Eigenvector
(LS) Squares (LS) (NEVM) Method
[Singer ‘11] (it. NEVM)
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Cluster Optimization

Find rotation angles for each fragment with
respect to the global coordinate system

- Find unknown angles

01,92, ce ,Hn ~ [O, 271']

- from known pairwise matches

5ii=0; — 0,

000056

0000s s

Optimize: i
. i0;:2; | 2 Limit Contribution of A \
min E z; — e'ii* AN —
01,02.....0, — ( ! ) Wrong Matches /\ | \
1, / N\ 4 .
b b b b Y \
Normalized lterative \
L east lterative Eigenvector Normalized o
Squares Least Method Eigenvector
(LS) Squares (LS) (NEVM) Method
[Singer ‘11] (it. NEVM)




Selection

e (Cluster Fitness
* Selection Algorithm

e Round Robin

e Diversification



Cluster Fitness

Assign clusters scores based on their intrinsic properties

Fragment Overlap

Convex Hull Ratio s

Connectivity




Round-Robin Selection

Limit number of clusters with the same fragment

Djstribution of# of Clusters IPer Fragmenlt

Number of Clusters

| AEREEEREN
Fragment ID



Diversification

Remove duplicate clusters

J<J”

Jaccard Similarity =

of fragments




Genetic Algorithm

Initialization
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Evaluation

* Reconstruction quality”

* Algorithmic contributions”



Evaluation:
Reconstruction Quality (Quantitative)

Method # of Fragments F-score
Our Full System (GA) 90 0.823
Hierarchical Clustering (HC) 49 0.411
Dense Cluster Growth (DCG) 7 0.082

Performance comparison of different wall painting
reconstruction methods with our fitness and feasibility criteria.

Precision * Recall

F-score=2* —
Precision + Recall

of correct matches



Evaluation:
Reconstruction Quality (Qualitative)

[Dense Cluster Growth]' [Our Result]
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[Castaneda et al. 2011]
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[Hierarchical Clustering]



Evaluation:
Reconstruction Quality (Qualitative)

[Our Result]
e,




Evaluation:
Reconstruction Quality (Qualitative)

[Dense Cluster Growth]' [Our Result]
>




Evaluation:
Reconstruction Quality (Qualitative)

[Dense Cluster Growth] [Our Result] | [Ground Truth]
e,

[Hierarchical Clustering]



Evaluation:
Reconstruction Quality (Qualitative)

[Dense Cluster Growth]' [Our Result]
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[Hierarchical Clustering]



Evaluation:
Does Our Cluster Optimization Help?
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Comparison of performance of our method
with various cluster optimization routines.



Evaluation:
Do Larger Clusters Have Higher

Precision?
10
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Recall

Precision - Recall comparison of different iteration
of our algorithm (aggregated over 10 runs)



summary

* (Genetic algorithms are not greedy - they defer
selection of matches until large assemblies are formed

* QOur genetic algorithm is able to find larger assemblies
than previous methods

* More robust cluster optimization helps find larger
assemblies



Limitations

 (GA is very time consuming (tens of hours)

 Hand - tuned cluster scoring function
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