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Limitations

• Scales with artifacts 

• Not detail-preserving   

• Not structure-aware           
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Characteristics

• Detail-preserving  

• Structure-aware 

• Scales without artifacts 

• Suitable for learning  

Part-Aware  
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been

c� 2018 The Author(s)
Computer Graphics Forum c� 2018 The Eurographics Association and John Wiley & Sons Ltd.

E. Balashova et al. / Learning A Stroke-Based Representation for Fonts

(a) (b) (c) (d)

Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been

c� 2018 The Author(s)
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been

c� 2018 The Author(s)
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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Figure 5: We illustrate our skeleton fitting pipeline. Given an input
glyph, we first extract its skeleton (a). We then register this skele-
ton to a template (b) to obtain an initial segmentation (c). We then
use CRF-based segmentation to obtain the final consistent segmen-
tation of the skeleton with respect to the template (d).

of the skeleton to the template, and the pairwise term favors cuts at
sharp features and intersections. In particular, we optimize:

E = Â
x2V

Wu ·U(x,L(x))+ Â
x,y2V,L(x) 6=L(y)

Wb ·B(x,y), (5)

where the unary U(x, l) term is a penalty for assigning a point x a
label l and the binary term B(x,y) is a penalty for a pair of adjacent
skeleton points to have different labels. These are formulated as:

U(x, l) = hsu (Dl(x)) (6)

B(x,y) =

(
1�hsa (A(x,y)) , (x,y) 2 E ^ x /2 J
0, otherwise

(7)

To define the unary term, we use Dl(x), a distance between the
template and the extracted skeleton after it is registered onto the
template skeleton using Coherent Point Drift method [MSCP⇤07],
where the distance is measured to the lth skeleton segment. To de-
fine the binary term we use the angle between the normals of adja-
cent points A(x,y), where E denotes adjacency and J denotes junc-
tions - points where more than two skeleton paths meet. Both terms
are smoothed with the aforementioned Gaussian kernel hsigma, and
we set su = 0.25,sa =

p
3,Wu = 1,Wb = 4.

After the skeleton is consistently segmented with the template,
we parametrize every segment according to the template Tc(q), i.e.
we fit a Bezier curve to match each stroke sc, f . Once the strokes of
the glyph are fitted, we turn to initialize the outlines next.

5.3.2. Outline Initialization, Q0
o

We represent the outline in the coordinate system of the extracted
skeleton segment (see Figure 2). To create an initial outline esti-
mate, we first generate a profile curve at a constant distance that
fits closely to the input outline for every stroke (i.e., such that the
average distance between the curve and the closest point on the out-
line is minimized) (see Figure 6). The resulting outline is typically
not continuous since the curve parameters are estimated indepen-
dently for each stroke. We enforce C0 continuity at junctions of
outline segments by snapping the corresponding points to their av-
erage position. Sometimes this averaged control point can flip sides
of the skeleton, which leads to inferior optimization performances.
We detect these cases and project the average control point back to
the correct side of the corresponding skeleton segment.

6. Learning

Given a collection of fonts F = {F1,F2, ...,FN} we use our glyph
fitting techniques to represent all letter glyphs consistently. We con-

Figure 6: Outline optimization. Given an input glyph and its cal-
culated skeleton (top left), we use its segmented version (see Sec-
tion 5.3.1) to generate uniform width outlines around it (top mid-
dle). Our initial guess Oc(Q0) is the latter, after incorporating the
template’s connectivity constraints (top right). Our fitting proce-
dure takes three considerations into account. Optimizing using only
Ecorr (see Section 5.1.1) can attract incompatible regions, as can be
seen in the red box (bottom left). Considering normal directions
(see Section 5.1.2) mitigates this issue (bottom middle). Finally,
incorporating feature point alignment (see Section 5.1.3) is crucial
for a semantically meaningful fitting, inducing consistent represen-
tation across different fonts. This is highlighted in the red circles
(bottom right).

catenate per-glyph parameters to create a feature vector represent-
ing a font: Fi = [Q‘a’,Q‘b’, ...Q‘z’]. In this representation each font
becomes a point in high-dimensional feature space: Fi 2 RDfont ,
where Dfont = 3998 (the number of parameters required to repre-
sent all glyph parts in a font, after enforcement of continuity and
template part-sharing constraints). We expect this representation to
be redundant due to stylistic and structural similarities in fonts:
glyphs in the same font will share stylistic elements, and glyphs
that correspond to the same letter will have similar stroke structure.
We propose to learn these relationships by projecting all fonts to
a lower-dimensional embedding. The main motivation behind this
is to create a space where important correlations between different
attributes are captured implicitly, and thus, any sample point X in
this representation will implicitly adhere to common design prin-
ciples and font structures in the training data F . For this we need
an embedding function M that projects a font to a low-dimensional
feature space, i.e. M(F) = X , where X 2 RD, and an inverse func-
tion C that can reconstruct a font from the embedding C(X) = F .
To enforce learning correlations in the data we set the latent dimen-
sionality D = aDfont = 39 with a = 0.01, which was determined
experimentally to work best for our setup.

In addition to capturing important correlations, we want the em-
bedding function to handle missing entries in the input feature vec-
tors Fi because most fonts do not have glyphs with all possible
topologies (i.e., decorative elements and stroke structures). In addi-
tion, in many applications in order to help the typeface designer we
need to be able to reason about the whole font before it has been
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